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Nonrelativistic conformal group

d+ 1 dimensional Galilean group
• Mij : rotation
• Pi: translation
• Ki: Galilean boost, [Pi,Kj] = −iδijM , whereM : mass

Conformal extension
• D: dilatation with dynamical exponent z

[D,Pi] = −iPi, [D,H] = −izH,
[D,Ki] = i(z − 1)Ki [D,M ] = i(z − 2)M

• C: special conformal transformation when z = 2

[C,Pi] = iKi, [D,C] = 2iC, [H,C] = iD.
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Nonrelativistic conformal group

Called as Schrödinger group when z = 2 because

S =

∫
ddxdt

[
ψ†i∂tψ −

1

2m
(∂iψ)2

]
has this symmetry.

• D: x → λx, t → λ2t

D =

∫
ddx xiji(x), ji(x) = iψ†∂iψ − i(∂iψ

†)ψ

• C: x → x/(1 − λt), t → t/(1 − λt)

C =

∫
ddx

x2

2
n(x), n(x) = ψ†ψ
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Nonrelativistic conformal system

• Fermion at “unitarity” in d = 3 [Mehen-Stewart-Wise]

S =

∫
d3xdt

[
ψ†

σi∂tψσ −
1

2m
(∂iψσ)2 + g(ψ†

↓ψ
†
↑ ψ↓ψ↑ )

]
when “g → ∞” or more precisely at infinite scattering length

• Experimentally realized in the system of trapped cold atoms
• Strongly coupled, hard to solve Might AdS/CFT help ???

• Interacting anyon gas in d = 2 [Jackiw-Pi,Bergman-Lozano]
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Aside: State-Operator correspondence in NR CFT

• doesn’t make sense to put the theory on S3

• instead consider changing

H → D̃ ≡ H + C =

∫
ddx

[
ε(x) +

x2

2
m(x)

]

Cold atoms in the harmonic potential.
• one can show

D̃|O〉 = ∆|O〉

where |O〉 ≡ e−HO|0〉 and [D,O] = −∆O [Nishida-Son]
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Aside: Unitarity bound in NR CFT

Unitarity bound in relativistic CFT

• algebra Pµ,Kµ,Mµν ,D P̃i, K̃i, M̃ij , D̃.
• Norm of P̃iP̃i|O〉 = 2∆+ 2 − d if spin 0.
• ∆ ≥ (d− 2)/2.
• saturated = free relativistic particle

Unitarity bound in NR CFT

• algebra Pi,Ki,Mij ,H,D, C P̃i, K̃i, M̃ij , H̃, D̃, C̃
• Norm of (H̃ + P̃iP̃i/2M)|O〉 = 2∆− d.

• irrespective of spin.
• ∆ ≥ d/2.
• saturated = free Schrödinger.
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Background with non-relativistic conformal symmetry

• [Son] and [Balasubramanian-McGreevy] found the metric

ds2 = −σ2r2z(dx+)2 +
dr2

r2
+ r2(−dx+dx− + d~x2)

which has the non-relativistic conformal symmetry with dynamical
exponent z.

• D acts as follows :

~x → λ~x, x+ → λzx+, x− → λ2−zx−, r → r/λ.

• x+ ↔ H, x− ↔ M

• Deformation of AdSd+2 for the non-relativistic conformal system
with d spatial dimension

• Seems natural to compactify x− when z = 2
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Discrete Light-Cone Quantization

• If one compactifies x−, deformation is not necessary ...
• The isometry of

ds2 = +
dr2

r2
+ r2(−dx+dx− + d~x2), x− ∼ x− + r−

is exactly the Schrödinger group.
• DLCQ of relativistic theory looks like Galilean.

p+p− − ~p 2 = 0 E =
~p 2

M
where E = p+,M = p−

• DLCQ of relativistic conformal theory Galilean + conformal !
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Discrete Light-Cone Quantization

• AdS5 × S5 with x− ∼ x− + r− DLCQ of N = 4 SYM.
• Mysterious theory in 2+1 dimensions. Doesn’t at all look like
fermions at unitarity ...

• AdS7 × S4 with x− ∼ x− + r− DLCQ of M5-brane theory

• Studied already in [Aharony-Berkooz-Seiberg,’97].
NR superconformal group was written down there.

• Theory in 4+1 dimensions. N momenta along x−, k M5-brane
Quantum mechanics ofN instantons of U(k) gauge group

• It has 4-d Schrödinger symmetry, but definitely not cold atoms in 4d.
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Noncommutative deformation

Deformed version with z = 2

ds2 = −σ2r4(dx+)2 +
dr2

r2
+ r2(−dx+dx− + d~x2)

times S5 can be obtained by a solution-generating technique.
TsT transformation or Melvin twist.

1 Choose a direction ϕ in S5. T-dualize ϕ to ϕ̃

2 redefine new x− to be x−
new = x−

old + σϕ̃

3 T-dualize ϕ̃ back to ϕ.

Field theory side: funny non-commutativity

f ∗ g = ei(Pf Rg−PgRf )fg

where P : momentum along x−, R: R-charge
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Noncommutative deformation

So, the background of [Son],[Balasubramanian-McGreevy]
is dual to DLCQ of funny noncommutative deformation of N = 4 SYM.

It looks quite different from cold atoms (=fermion at unitarity.)
One can study its thermodynamic properties e.g. viscosity, entropy
with this caveat in mind:

Is the difference larger than that of QCD at RHIC and hot N = 4 SYM ?

Strong coupling necessary for having gravity dual, but not sufficient.
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More caveats

• Vacuum solutions have x− compactified sub-stringy length.
Can’t trust supergravity approx.

• With momenta along x− and finite temperature,
x− direction becomes spacelike

• Asymptotes to vacuum solutions still bad at r → ∞
• Thermodynamic properties determined by the horizon r ∼ rH

• should be OK. cf. holography for Dp-brane with p 6= 3
[Itzhaki-Maldacena-Sonnenschein-Yankielowicz]
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BH solution

• AdS TsT Schrödinger bkg.
• non-extremal brane solution

TsT finite temperature solution.
• Near-horizon form of the non-extremal D3-brane

ds2 =
1

1 − r4
0/r

4

dr2

r2
+

r2

[
−dx+dx− +

r4
0

4r4

(
λ−1dx+ + λdx−

)2
+ d~x 2

]

• Horizon at r = r0,
• x− direction spacelike.
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BH solution

ds2 = e
3
2

Φr2

[(
−1 +

r4
0

2r4

)
dx+dx− +

r4
0

4r4

(
λ2(dx−)2 + λ−2(dx+)2

)
− σ2r2

(
1 −

r4
0

r4

)
(dx+)2

]
+ e− Φ

2 r2

[
1

r4 − r4
0

dr2 + d~x2

]
+ e− Φ

2 ds2(BKE) + e
3
2

Φη2

with dilaton and B-field given by

e−2Φ = 1 + σ2λ2r
4
0

r2
,

B = σ
r2

2
e2Φ

[(
2 −

r4
0

r4

)
dx+ − r4

0λ
2 dx−

]
∧ η.
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Temperature, etc.

• Energy: E = −P+, Particle Number: N = r−(−P−);
• Temperature: surface gravity; Entropy: area law
• chemical potential µ : g+− component at the horizon

N/V ∝ (r−)2λ2r4
0, E/V ∝ r−r4

0

T ∝ r0/λ µ = 1/(r−λ2)

S/V ∝ λr−r3
0.

• Satisfy the 1st law, δE = TδS − µδN .
• E ∝ T 4/µ2, E/N ∝ µ

• Why are they so simple ?
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Why so simple ?

• E ∝ T 4/µ2, E/N ∝ µ

• Dilatation x → kx, t → k2t should transform

T → k−2t, E/V → k−4(E/V ), µ → k−2µ

• E/V = T 2f(µ/T ).

• Why f(x) = x−2 for supergravity solutions ??
(n.b. different from free theories)

Yuji Tachikawa (IAS) September 2008 20 / 29



Why so simple ?

• Another ‘solution generating technique’:

just boost x+ → λx+, x− → x−/λ, but keep r− fixed.

T → T/λ, E/V → E/V, µ → µ/λ2

• E/V = g(µ/T 2).

• E/V = T 2f(µ/T ) E/V = T 4/µ2

• Universal prediction of having a weakly-curved gravity dual.
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Deformed background

The metric

ds2 = −σ2r2z(dx+)2 +
dr2

r2
+ r2(−dx+dx− + d~x2)

is not Einstein, but a solution of the system

S =

∫
dd+3x

√
−g

[
R− 2Λ−

1

4
FµνF

µν −
m2

2
AµA

µ

]

with A ∝ rzdx+.

Λ = −(d+ 1)(d+ 2)/2, m2 = z(z + d).

Is it possible to embed it to 10d/11d supergravity ?
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Massive fields

Needs massive fieldsm2 = z(z + d) in the reduction.

In AdS5× SE5 compactification,
one has the Reeb 1-form η and 2-form ω = dη.

For S5, think of it as S1 bundle parametrized by ϕ over CP2.
Then η = dϕ+ · · · and ω: Kähler form of CP2.

B2 = A ∧ η A hasm2 = 8 z = 2.

C4 = A ∧ ?ω and ds2(SE) = (dϕ+ A)2 + · · ·
They mix Modes withm2

+ = 24 andm2
− = 0. z = 4.
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Non-linear reduction withm2 = 8

Ansatz:

ds2
10 = e− 2

3
(4U+V )ds2(M) + e2Uds2(BKE) + e2V η2 ,

B = A ∧ η + θ ω ,

F5 = (1 + ?)G5 where G5 = 4e−4U−V vol(M)

where ds2(BKE) + η2 is a Sasaki-Einstein metric.
Nontrivial dilaton; other fields zero.

S =
1

2

∫
d5x

√
−g
[
R + 24e−u−4v − 4e−6u−4v − 8e−10v

− 5∂au∂
au−

15

2
∂av∂

av −
1

2
∂aΦ∂

aΦ

−
1

4
e−Φ+4u+vFabF

ab − 4e−Φ−2u−3vAaA
a
]
,

where u = (2/5)(U − V ) and v = (4/15)(4U + V )
This is a consistent reduction!
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Non-linear reduction withm2 = 8

Ansatz:

ds2
10 = e− 2

3
(4U+V )ds2(M) + e2Uds2(BKE) + e2V η2 ,

B = A ∧ η + θ ω ,

F5 = (1 + ?)G5 where G5 = 4e−4U−V vol(M)

• Can’t turn on B alone.
• need to keep U : size of the base, V : size of the fiber, Φ: dilaton
• θ eaten by A to become massive
• Action with θ, U , V , and Φ given in [Klebanov-Tseytlin] for S5,
[Benvenuti-Mahato-YT-Pando Zayas] for SE5
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Non-linear reduction withm2 = 24

Ansatz:

ds2 = e− 2
3
(4U+V )ds2(M) + e2Uds2(BKE) + e2V (η + A)2 ,

F5 = (1 + ?10)
[
2ω2 ∧ (η + A) + 2ω2 ∧ (A − A)

− ω ∧ (η + A) ∧ F
]

where F = dA, F = dA.

S =
1

2

∫
d5x

√
−g
[
R + 24e−u−4v − 4e−6u−4v − 8e−10v

− 5∂au∂
au−

15

2
∂av∂

av −
1

4
e−4u+4vFabFab

−
1

2
e2u−2vFabFab −8e−4u−6v(A−A)a(A−A)a

]
+

1

2

∫
A∧F∧F ,

Again, this is a consistent reduction!
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Summary

Done
• Non-relativistic conformal theory and DLCQ.
• Thermodynamics
• Consistent truncation with massive fields.

To do
• Extract more physics.
• What are the dual field theories ?
• How different are they from cold atoms ?
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